Juno[®] MC7X113 Velocity Control ICs

Juno® MC71113 and MC73113-series ICs provide advanced velocity control of Brushless DC and DC Brush motors. Available as a single one-axis IC in two different package options, these products provide ultra-efficient FOC control and are ideal for a wide range of applications including mobile robotics, spindle control, semiconductor equipment, pumping, lab automation, industrial control and aerospace applications.

Easy Integration

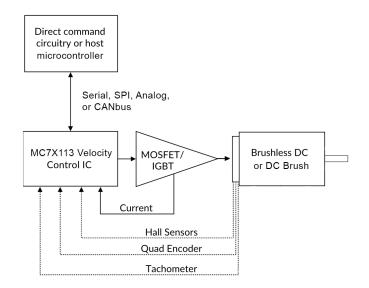
Juno ICs interface to external bridge-type switching amplifiers and utilize Performance Motion Device's advanced current and switch-signal generation technology for ultra smooth operation. Bridge settings such as charge pump refresh time, dead time, and minimum current read time are all user programmable.

Intelligent Drive Management

Juno ICs are equipped with advanced amplifier management features such as overcurrent, overvoltage, undervoltage, and overtemperature detect. Onboard i2T current foldback provides an additional level of safety which can protect motors and actuators from overheating.

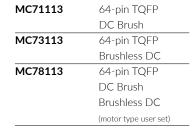
Accurate & Smooth Motion

Utilizing PI (Proportional, Integral) control, an advanced velocity estimator algorithm, a bandpass filter, and dual biquad filters the MC7x113's velocity loop delivers smooth, accurate motion. Coupled with an onboard profile generator that has settable velocity, acceleration, deceleration parameters these ICs can handle even the most demanding motion control applications.



FEATURES

- Controls 3-phase Brushless DC and DC Brush motors
- High performance digital current loop
- Internal profile generator
- Velocity loop with encoder or tachometer feedback
- Sinusoidal or 6-step commutation
- Field oriented control
- Hall sensor inputs
- PWM output with shootthrough protection
- Direct analog signal input
- SPI, Serial, and CANbus communications
- Quadrature encoder input up to 40 Mcounts/sec
- NVRAM configuration load and trace memory


- Compact 64-pin TQFP package
- High speed index input and capture
- SPI (Serial Peripheral Interface) or direct analog signal command input
- Brake signal input
- 10 kHz velocity loop
- 20, 40, 80, 120 kHz PWM rate
- 20 kHz commutation and current loop rate
- i2t current foldback protection
- Overcurrent, Over/under voltage, and overtemperature detect

CONFIGURATION

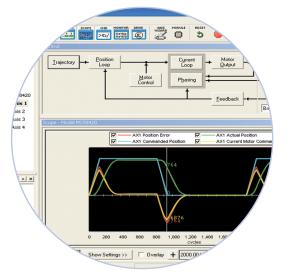
TECHNICAL OVERVIEW

PART NUMBERS

SPI (Serial Pe	eripheral Interface)		M
CANbus 2 0B	o point & multi-drop)		M
HostInterrupt Pulse & Direction AtRest AnalogCmd QuadA, B Index HallA-C Tachometer	Profile Generation Processing Velocity Loop Phasing & Current Loop FOC & State Space PWM NVRAM Trace RAM Watchdog Biquad Filter HV Safety Drive Safety Pulse, Direction Quad, Index	Shunt Switch & Power Resistor BusVoltage BusCurrentSupply Temperature PWMHigh/LowA-C Analog Signal Conditioning O BLDC or DC Brush Motor	<u>M</u>
Enable Brake FaultOut	MC71113 MC73113 MC78113	Cu	• Leg urrent ensors

Parameters	Value		
Motors supported	3-phase Brushless DC, DC Brush		
Operating modes	Standalone: direct command input via external circuitry (onboard NVRAM holds configuration) Host command: microprocessor command input		
Control loops	Velocity loop, current loop		
Current control modes	FOC (Field Oriented Control), Third leg floating, Phase A/B, Voltage mode (no current control)		
Commutation modes	6-step (using Hall sensors) Sinusoidal (with quadrature encoder input)		
Motor output modes	High/low PWM, Sign/Magnitude PWM		
Profile generator parameters	Velocity, acceleration, deceleration		
Communication modes	Point-to-point asynchronous serial, Multi-drop asynchronous serial, SPI, or CANbus 2.0		
Serial baud rate range	1,200 to 460,800 baud		
CANbus baud rate range	10,000 to 1,000,000 baud		
Internal trace RAM	6,144 16-bit words		
Internal NVRAM	8,192 16-bit words		

Parameters	Value
Velocity feedback options	Quadrature encoder Hall sensors Analog tachometer signal (12-bit A/D resolution)
Velocity and torque command options	Analog signal (12-bit A/D resolution) Digital SPI (16-bit resolution) Internal profile generator
Control/status signals	Enable, FaultOut, Hostinterrupt, Brake
Motor drive signals	PWM High/LowA-C, AmplifierEnable, CurrentA-C
DC Bus safety signals	Shunt, BusVoltage, BusCurrentSupply, Temperature
Motor feedback signals	QuadA, QuadB, Index, HallA-C, Tachometer, digital SPI
Max quadrature rate	40 Mcounts/second
Max SPI frequency	10 MHz
Velocity loop rate	Programmable up to 10 kHz
Current loop rate	20 kHz
Commutation rate	20 kHz
PWM rate	20, 40, 80, 120 kHz
Dimension	64-pin TQFP: 12 mm x 12 mm including leads


Development Tools

INCLUDES

- Standalone developer kit board
- · Pro-Motion software
- Software Development Kit (SDK) with C-Motion
- Complete documentation

2

TUNE & OPTIMIZE

Pro-Motion® GUI

Pro-Motion is a sophisticated, easy-to-use Windows-based exerciser program for use with PMD motion control ICs, modules, and cards.

FEATURES

- Motion oscilloscope graphically displays processor parameters in real-time
- Autotuning
- Ability to save and load settings
- · Axis wizard
- Distance and time units conversion

- Motor-specific parameter setup
- Axis shuttle performs programmable motion between two positions
- Communications monitor echoes all commands sent by Pro-Motion to the board
- Advanced Bode analysis for frequency machine response

BUILD THE APP C-Motion®

C-Motion is a complete, easy-to-use, motion programming language that includes a source library containing all the code required for communicating with PMD motion ICs, boards, and modules.

C-MOTION FEATURES INCLUDE:

- Extensive library of commands for virtually all motion design needs
- Develop embeddable C/C++ applications
- Complete, functional examples
- Supports serial, CAN, Ethernet, and SPI communications

code for executing a profile and tracing tured in this example could be used for tuning the

trace buffer wrap mode to a one time trace

aceMode(hAxis1, PMDTraceOneTime);

At the processor variables that we want to capture

tTraceVariable (hAxis1, PMDTraceVariable1, PMDAxis1,
etTraceVariable (hAxis1, PMDTraceVariable2, PMDAxis1,
SetTraceVariable (hAxis1, PMDTraceVariable3, PMDAxis1,

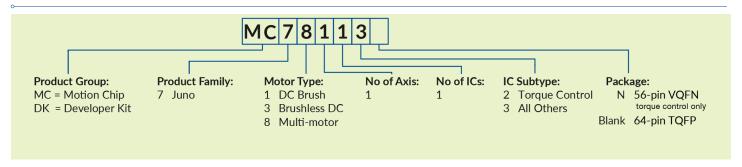
// set the trace to begin when we issue the next update command
SetTraceStart(hAxis1, PMDTraceConditionNextUpdate)

// set the trace to stop when the MotionComplete event occurs

SetTraceStop(hAxis1, PMDTraceConditionEventStatus, PMDEventMotionCompleteBit, PMDTraceStateHigh); SetProfileMode(hAxis1, PMDTrapezoidalProfile);

set the profile parameters

Position(hAxis1, 200000); Velocity(hAxis1, 0x200000); celeration(hAxis1, 0x1000); leration(hAxis1, 0x1000);


M. T.

PMD PRODUCT FAMILY OVERVIEW

	# Axes	Motor Types	Format	Voltage	Communication	Features
JUNO® VELOCITY & TORQUE CONTROL ICS	1	Brushless DC DC Brush	64-pin TQFP56-pin VQFN	3.3 V	RS232/485CANbusSPI	 Velocity control Current control Field oriented control
MAGELLAN® MOTION CONTROL ICS	1,2,3,4	Brushless DCDC BrushStep Motor	144-pin TQFP100-pin TQF	3.3 V	RS232/485CANbusSPIParallel	Position controlTorque/current controlField oriented controlProfile generation
ATLAS® DIGITAL AMPLIFIERS	1	Brushless DCDC BrushStep Motor	20-pin solderable module	12-56 V	SPI Pulse and direction	Torque/current controlField oriented controlMOSFET amplifier
ION®/CME N-SERIES DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed PCB-mounted module	12-56 V	EthernetRS232/485CAN FDSPI	 Position control Torque/current control Field oriented control Profile generation MOSFET amplifier Downloadable user code
ION® 500 & 3000 DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed cable-connected module	12-56 V 20-195 V	• Ethernet • RS232/485 • CANbus	 Position control Torque/current control Field oriented control Profile generation MOSFET amplifier Downloadable user code
PRODIGY® MOTION BOARDS	1,2,3,4	Brushless DCDC BrushStep Motor	Machine Controller	• 12-56 V: Machine Controller	• Ethernet • RS232/485 • CANbus	 Position control Torque/current control Field oriented control Profile generation Downloadable user code

C-Motion® is the common motion language for all Performance Motion Devices products.

FOR ORDERING

To place an order email purchaseorders@pmdcorp.com. For questions email support@pmdcorp.com

80 Central St, Boxborough, MA 01719 Tel: 978.266.1210 Fax: 978.266.1211 e-mail: info@pmdcorp.com www.pmdcorp.com

About Performance Motion Devices

Performance Motion Devices (PMD) is a worldwide leader in motion control ICs, boards and modules. Dedicated to providing cost-effective, high performance motion systems to OEM customers, PMD utilizes extensive in-house expertise to minimize time-to-market and maximize customer satisfaction.

ATLAS, ION, Juno, Magellan, Navigator, Pilot, Prodigy, C-Motion and Pro-Motion are trademarks of Performance Motion Devices, Inc. All other trade names, brand names and company names are the property of their respective owners. 2025 Performance Motion Devices, Inc.